Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Pure artificial intelligence (AI)-based weather prediction (AIWP) models have made waves within the scientific community and the media, claiming superior performance to numerical weather prediction (NWP) models. However, these models often lack impactful output variables such as precipitation. One exception is Google DeepMind’s GraphCast model, which became the first mainstream AIWP model to predict precipitation, but performed only limited verification. We present an analysis of the ECMWF’s Integrated Forecasting System (IFS)-initialized (GRAPIFS) and the NCEP’s Global Forecast System (GFS)-initialized (GRAPGFS) GraphCast precipitation forecasts over the contiguous United States and compare to results from the GFS and IFS models using 1) grid-based, 2) neighborhood, and 3) object-oriented metrics verified against the fifth major global reanalysis produced by ECMWF (ERA5) and the NCEP/Environmental Modeling Center (EMC) stage IV precipitation analysis datasets. We affirmed that GRAPGFSand GRAPIFSperform better than the GFS and IFS in terms of root-mean-square error and stable equitable errors in probability space, but the GFS and IFS precipitation distributions more closely align with the ERA5 and stage IV distributions. Equitable threat score also generally favored GraphCast, particularly for lower accumulation thresholds. Fractions skill score for increasing neighborhood sizes shows greater gains for the GFS and IFS than GraphCast, suggesting the NWP models may have a better handle on intensity but struggle with the location. Object-based verification for GraphCast found positive area biases at low accumulation thresholds and large negative biases at high accumulation thresholds. GRAPGFSsaw similar performance gains to GRAPIFSwhen compared to their NWP counterparts, but initializing with the less familiar GFS conditions appeared to lead to an increase in light precipitation. Significance StatementPure artificial intelligence (AI)-based weather prediction (AIWP) has exploded in popularity with promises of better performance and faster run times than numerical weather prediction (NWP) models. However, less attention has been paid to their capability to predict impactful, sensible weather like precipitation, precipitation type, or specific meteorological features. We seek to address this gap by comparing precipitation forecast performance by an AI model called GraphCast to the Global Forecast System (GFS) and the Integrated Forecasting System (IFS) NWP models. While GraphCast does perform better on many verification metrics, it has some limitations for intense precipitation forecasts. In particular, it less frequently predicts intense precipitation events than the GFS or IFS. Overall, this article emphasizes the promise of AIWP while at the same time stresses the need for robust verification by domain experts.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract AI-based algorithms are emerging in many meteorological applications that produce imagery as output, including for global weather forecasting models. However, the imagery produced by AI algorithms, especially by convolutional neural networks (CNNs), is often described as too blurry to look realistic, partly because CNNs tend to represent uncertainty as blurriness. This blurriness can be undesirable since it might obscure important meteorological features. More complex AI models, such as Generative AI models, produce images that appear to be sharper. However, improved sharpness may come at the expense of a decline in other performance criteria, such as standard forecast verification metrics. To navigate any trade-off between sharpness and other performance metrics it is important to quantitatively assess those other metrics along with sharpness. While there is a rich set of forecast verification metrics available for meteorological images, none of them focus on sharpness. This paper seeks to fill this gap by 1) exploring a variety of sharpness metrics from other fields, 2) evaluating properties of these metrics, 3) proposing the new concept of Gaussian Blur Equivalence as a tool for their uniform interpretation, and 4) demonstrating their use for sample meteorological applications, including a CNN that emulates radar imagery from satellite imagery (GREMLIN) and an AI-based global weather forecasting model (GraphCast).more » « lessFree, publicly-accessible full text available June 9, 2026
- 
            Abstract Numerous artificial intelligence-based weather prediction (AIWP) models have emerged over the past 2 years, mostly in the private sector. There is an urgent need to evaluate these models from a meteorological perspective, but access to the output of these models is limited. We detail two new resources to facilitate access to AIWP model output data in the hope of accelerating the investigation of AIWP models by the meteorological community. First, a 3-yr (and growing) reforecast archive beginning in October 2020 containing twice daily 10-day forecasts forFourCastNet v2-small,Pangu-Weather, andGraphCast Operationalis now available via an Amazon Simple Storage Service (S3) bucket through NOAA’s Open Data Dissemination (NODD) program (https://noaa-oar-mlwp-data.s3.amazonaws.com/index.html). This reforecast archive was initialized with both the NOAA’s Global Forecast System (GFS) and ECMWF’s Integrated Forecasting System (IFS) initial conditions in the hope that users can begin to perform the feature-based verification of impactful meteorological phenomena. Second, real-time output for these three models is visualized on our web page (https://aiweather.cira.colostate.edu) along with output from the GFS and the IFS. This allows users to easily compare output between each AIWP model and traditional, physics-based models with the goal of familiarizing users with the characteristics of AIWP models and determine whether the output aligns with expectations, is physically consistent and reasonable, and/or is trustworthy. We view these two efforts as a first step toward evaluating whether these new AIWP tools have a place in forecast operations.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.more » « less
- 
            Abstract Predicting the timing and location of thunderstorms (“convection”) allows for preventive actions that can save both lives and property. We have applied U-nets, a deep-learning-based type of neural network, to forecast convection on a grid at lead times up to 120 min. The goal is to make skillful forecasts with only present and past satellite data as predictors. Specifically, predictors are multispectral brightness-temperature images from theHimawari-8satellite, while targets (ground truth) are provided by weather radars in Taiwan. U-nets are becoming popular in atmospheric science due to their advantages for gridded prediction. Furthermore, we use three novel approaches to advance U-nets in atmospheric science. First, we compare three architectures—vanilla, temporal, and U-net++—and find that vanilla U-nets are best for this task. Second, we train U-nets with the fractions skill score, which is spatially aware, as the loss function. Third, because we do not have adequate ground truth over the fullHimawari-8domain, we train the U-nets with small radar-centered patches, then apply trained U-nets to the full domain. Also, we find that the best predictions are given by U-nets trained with satellite data from multiple lag times, not only the present. We evaluate U-nets in detail—by time of day, month, and geographic location—and compare them to persistence models. The U-nets outperform persistence at lead times ≥ 60 min, and at all lead times the U-nets provide a more realistic climatology than persistence. Our code is available publicly.more » « less
- 
            Abstract We introduce the National Science Foundation (NSF) AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES). This AI institute was funded in 2020 as part of a new initiative from the NSF to advance foundational AI research across a wide variety of domains. To date AI2ES is the only NSF AI institute focusing on environmental science applications. Our institute focuses on developing trustworthy AI methods for weather, climate, and coastal hazards. The AI methods will revolutionize our understanding and prediction of high-impact atmospheric and ocean science phenomena and will be utilized by diverse, professional user groups to reduce risks to society. In addition, we are creating novel educational paths, including a new degree program at a community college serving underrepresented minorities, to improve workforce diversity for both AI and environmental science.more » « less
- 
            Estimating Full Longwave and Shortwave Radiative Transfer with Neural Networks of Varying ComplexityAbstract Radiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative Transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated a highly simplified version of the shortwave RRTM only—excluding many predictor variables, driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the Northern Hemisphere. In this work we emulate the full shortwave and longwave RRTM—with all predictor variables, driven by GFSv16 forecasts on the native pressure–sigma grid, using data from around the globe. We experiment with NNs of widely varying complexity, including the U-net++ and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great detail—as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/−0.002 K day−1for heating rate and 6.3/4.3/−0.1 W m−2for net flux. Analogous numbers for the longwave NN are 0.22/0.12/−0.0006 K day−1and 1.07/0.76/+0.01 W m−2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90) times faster than the RRTM. Both will soon be tested online in the GFSv16. Significance StatementRadiative transfer is an important process for weather and climate. Accurate radiative transfer models exist, such as the RRTM, but these models are computationally slow. We develop neural networks (NNs), a type of machine learning model that is often computationally fast after training, to mimic the RRTM. We wish to accelerate the RRTM by orders of magnitude without sacrificing much accuracy. We drive both the NNs and RRTM with data from the GFSv16, an operational weather model, using locations around the globe during all seasons. We show that the NNs are highly accurate and much faster than the RRTM, which suggests that the NNs could be used to solve radiative transfer inside the GFSv16.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
